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Suppose M g f x is a gradient RS w

Mig complete Then If is a complete v f
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andsimilar thing holdsfor X 0
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the v f If grows at most linearly in distance
wehave the following general result
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X is complete

Theorems Ivey Any closedsteady or expanding soliton
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8 or FROM Vol H constant
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we get R 20 Also eithe R O or R 0
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generalLemma

consider the ODE
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