We prove that atleast for gradient Ricci solitons completeness of the $v \cdot f \cdot \nabla f$. This result is originally due to Zhang '09. Theorem (Z. Zhang 2009) Suppose (M,g,f,) is a gradient RS w/ (Mⁿ, g) complete. Then Vf is a complete v.f. 'Proof: - Recall that we have $R + 1\nabla f = 0$ and we just proved that $R \ge 0$ if $\lambda \ge 0$ and $R \ge \frac{\lambda n}{2}$ if $\lambda < 0$. $=\mathcal{D}$ $|\nabla f|^2 = \lambda f + C - R$ $\leq \lambda f + C \quad w/ \text{ this } C = C(\lambda n) \geq 0.$ for the case $\lambda \neq 0$, =D h = $\lambda f + C$ satisfies h ≥ 0 and $|\nabla h|^2 = |\lambda \nabla f|^2 \le |\lambda|^2 h$

=D
$$|\nabla \sqrt{h}| \leq \frac{|\lambda|}{2}$$

let $q \in M^n$ and integrate along any minimizing
unit speed geodesic $V:[0, \delta(q)] \rightarrow M^n$, we get
 $\int h(q) - \int h(b) = \int^{r(q)} \langle \nabla Jh(r(s)), \delta'(s) \rangle ds$
 $\leq \int^{r(q)} |\nabla Jh| ds \leq \frac{|\lambda|}{2} \delta(q)$
=D $\int h(q) \leq \frac{|\lambda|}{2} \delta(q) + \int h(b)$
=D $\int \nabla f f(q) \leq \frac{|\lambda|}{2} \delta(q) + \int h(b)$
and similar thing holds for $\lambda = 0$.
So everall what we get in $Q \oplus s$ is that
the $v \notin \nabla f$ grows at most linearly in distance
we have the following general result.

w/ B(t)≥0 and a is non-decreasing then

$$u(t) = o(t) \exp(\int_{1}^{t} p(s) ds)$$
.
Jorus $u(t) = \pi(r(t)), \beta(t) = C$
 $o(t) = \pi(q) + Ct$
= P $\pi(s(t)) \leq (\pi(q) + Ct) e^{t}$ $\forall t + \zeta b$.
 $\lim_{t \to b} \pi(r(t)) = 0$ only if $b = 0$.
 $t - b$
Dimibily for $t - a$, we must have $a = -5$.
= P X is complete.

Theorem (Ivey) Any closed steady or expanding solution
is einstein. Any shrinking solution has $R > 0$.
 $\frac{1}{10} = 0$
 $\frac{1}{10$

which on integrating = P = P Jr = Ray = JR dre Vol(M) $\int R d\mu = \frac{n\lambda}{2} v_{o} l(H) \leq 0. - 0 = \frac{n\lambda}{2} \leq 0.$ Moneouer, divergence of the RS lg =D $\nabla^{i}(R_{ij} + \frac{1}{2}\nabla_{i}X_{j} + \frac{1}{2}\nabla_{j}X_{i}) = \frac{\lambda}{2}\nabla^{i}g_{ij}$ $= \frac{1}{2} \frac{1}{2} \sqrt{1} R + \frac{1}{2} \Delta X_{j} + \frac{1}{2} \sqrt{1} \frac{1}{2} \frac{1}{2} \sqrt{1} \frac{1}{2} R_{jm} X^{m}$ = 0 $= D \Delta X_{j} + R_{jm} X^{m} = 0.$ moreover, "," $\Delta_{x}R = \Delta R - \langle \chi, \nabla R \rangle$ and we want to relate XXR to the Ricci tensor. We start w/ $\nabla^{1}\nabla_{i}X_{j} + R_{jm}X^{m} = 0$ => $\nabla^{j} \nabla^{i} \overline{V_{i}} X_{j} + \frac{1}{2} \langle \nabla R, X \rangle + R_{m} \nabla^{j} X_{m}^{m} = 0$

 $= \nabla^{i} \nabla_{j} (\nabla_{i} X_{j}) - R^{ji} m \nabla^{m} X_{j} - R^{ji} m \nabla_{i} X^{m}$ + $\frac{1}{2}$ $\langle \nabla R_1 X \rangle$ + $R_{jm} \nabla^{j} X^{m}$ =0 $= \overline{V} \overline{V} (\overline{V}_{i} \chi^{j}) + R^{im} \frac{1}{2} (\overline{V}_{i} \chi_{m} + \overline{V}_{m} \chi_{i})$ $+\frac{1}{2}\langle \nabla R, X \rangle = 0$ = $\nabla T \left[\nabla_i \nabla_j X^j + R_{im} X^m \right] + R^{im} \left[- R_{im} + \frac{1}{2} g_{im} \right]$ $+\frac{1}{2}\langle \Delta S^{1}X\rangle = 0$ = $P \Delta(diux) + \frac{1}{2} \langle TR, x \rangle + Rim \nabla X^m - |Ric|^2$ $+\frac{1}{a}\langle \nabla R_{1}X\rangle$ $+\frac{1}{a}R_{2}=0$ $= 7 - \Delta R + \langle \nabla R, X \rangle - |Ric|^2 + \frac{\lambda}{2}R + Rim \nabla^i X^m = 0$ $\Delta_{x}R - \lambda R + 2|Ric|^{2} = 0$ =D

 $\sigma = \int R d\mu = + \frac{n\lambda}{2} vol(H) = constant$ and recall that r = nd $= \frac{1}{\Delta_{x}(R-n)} + 2 \frac{1}{Ric} - \frac{ng}{ng} + \frac{2n}{n}(R-n) = 0$ $2 Rich^2 - 4Rr + 2n^2$ n n 2 3. M'is compact = D Rachieves its minima say Rmin at some XDE MM and : at that point $2\left|\operatorname{Ric}-\frac{\pi}{n}g\right|^{2}+\frac{2\pi}{n}(R-\pi)\leq 0$ 20 20 as n= SRud > Rmin \sim Ric = $\frac{1}{2}$ g and Rmin = 7 = 7 R = 7. If the soliton is shrinking = $D \lambda < 0$ so again from the strong max. principle

we get $R \ge 0$. Also eithe $R \equiv 0$ or R > 0. If R=0 we get Rc=0 = $\int dxg = dg = p div X = nd$ which would force $\lambda = 0$ which is not possible. Vec.

* grand terme:-
Lowoiden the ODE

$$\frac{dx}{dt} = g(x(t))$$
.
 $\frac{dx}{dt} = g(x(t))$.
 $\frac{denma}{dt} = \frac{11}{2} x(t)$, $a \le t \le b$ is a maximal integral convertion
 $i) \ b = \pm \infty$
 $i) \ b = \pm \infty$
 $ii) \ or \exists a sequence of times $t : \in [a; b] \ s t \cdot t := b$
 $ord f x(t; i) = \infty$.
Proof:-
 $V = prove \ that \ if \ not \ ii) \ then \ i)$. Suppose $|x(t)| \ 4\infty$
 $V = t \ b \cdot b \ t$$